1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
#![forbid(unsafe_code)]
#![deny(clippy::all, missing_docs)]
//! `topo` provides stable callgraph identifiers for implementing higher
//! level [Incremental Computing] abstractions like those in the
//! [moxie](https://docs.rs/moxie) crate.
//!
//! # Scoping queries with [`CallId`]s
//!
//! There are several ways this crate's caches can be indexed, but for
//! incrementally computing repetitive hierarchical structures (like UI trees)
//! it can be very useful to describe cache queries in terms of a function's
//! abstract "location" within the runtime callgraph.
//!
//! To extract [`CallId`]s from code, the runtime callgraph must be "annotated"
//! with invocations of [`call`], [`call_in_slot`], and user-defined
//! [`nested`]-annotated functions. Each of these enters the scope of a child
//! [`CallId`] when called, causing [`CallId::current`] calls in that inner
//! scope to return the new [`CallId`].
//!
//! [`CallId`]s are deterministic and unique based on the preceding chain of
//! parent [`CallId`]s and data slots. Every chain has a root, either defined
//! implicitly by making a [`call`] without a parent, or explicitly by calling
//! [`root`]. By controlling the creation of roots, a runtime can ensure that
//! aside from changes to the executed graph itself, subsequent calls to the
//! same function will produce the same [`CallId`]s.
//!
//! ## Example
//!
//! ```
//! use topo::{call, root, CallId};
//!
//! let returns_two_ids = || {
//! let first = call(|| CallId::current());
//! let second = call(|| CallId::current());
//! assert_ne!(first, second, "these are always distinct calls");
//! (first, second)
//! };
//!
//! // running the closure as a nested call(...) gives different siblings
//! assert_ne!(call(returns_two_ids), call(returns_two_ids));
//!
//! // a call to root(...) gives each of these closure calls an identical parent CallId
//! assert_eq!(root(returns_two_ids), root(returns_two_ids));
//! ```
//!
//! ## Caching slots
//!
//! [`call_in_slot`] allows one to specify a "slot" -- a runtime value that
//! represents the call's "location" within its parents scope. This is
//! particularly useful for creating [`CallId`]s for child calls in collections
//! whose iteration order does not map exactly to the child's logical scope.
//!
//! An example might be a list of users where usernames are stable and their
//! associated resources should be cached by username, but the list order and
//! length change in ways unrelated to usernames. The username would be used as
//! the slot to prevent destruction and recreation of username-associated
//! resources when the list order changes.
//!
//! ```
//! use topo::{call_in_slot, CallId};
//!
//! let get_name_id = |name| call_in_slot(name, || CallId::current());
//!
//! // reusing the same slot will get the same CallId
//! let bob = get_name_id("bob");
//! let bob_again = get_name_id("bob");
//! assert_eq!(bob, bob_again);
//!
//! // different names produce different slots
//! let alice_hello = get_name_id("alice");
//! assert_ne!(bob, alice_hello);
//! ```
//!
//! Internally, slots are interned in a global [`dyn-cache`].
//!
//! [Incremental Computing]: https://en.wikipedia.org/wiki/Incremental_computing
//! [caching problem]: https://en.wikipedia.org/wiki/Cache_(computing)
/// Gives a function a unique [`CallId`] in its caller's topology by applying
/// `#[track_caller]` to the function and wrapping its body in [`call`] or
/// [`call_in_slot`] if the `slot` parameter is given.
///
/// ```
/// #[topo::nested]
/// fn widget() -> topo::CallId {
/// topo::CallId::current()
/// }
///
/// // each call to the nested function gets a unique CallId in its parent's scope
/// assert_ne!(widget(), widget());
///
/// // nesting can be overridden by giving the function its own root
/// assert_eq!(topo::root(widget), topo::root(widget));
/// ```
///
/// # Slots
///
/// By default, `#[nested]` functions use for their slot the number of times the
/// current source location has been called during the span of the current
/// `CallId`. It is the behavior offered by the [`call`] shorthand.
///
/// To override the slot of a nested function, use the `slot` parameter, which
/// is then passed directly as the first argument to [`call_in_slot`]:
///
/// ```
/// #[topo::nested(slot = "name")]
/// fn get_name_id(name: &str, _value: &str) -> topo::CallId {
/// topo::CallId::current()
/// }
///
/// // reusing the same slot will get the same CallId
/// let bob = get_name_id("bob", "hello");
/// let bob_again = get_name_id("bob", "hello");
/// assert_eq!(bob, bob_again);
///
/// // the same name in a nested call returns a *new* CallId
/// let bob_nested = topo::call(|| get_name_id("bob", "hello"));
/// assert_ne!(bob, bob_nested);
///
/// // different names produce different slots, even when other args are the same
/// let alice_hello = get_name_id("alice", "hello");
/// assert_ne!(bob, alice_hello);
///
/// // changing non-slot arguments doesn't affect the CallId produced
/// let alice_goodbye = get_name_id("alice", "goodbye");
/// assert_eq!(alice_hello, alice_goodbye);
/// ```
///
/// See [`call_in_slot`] and [`CallId`]'s documentation for more information on
/// how slots are used.
#[doc(inline)]
pub use topo_macro::nested;
use slot::{OpaqueSlot, Slot};
use std::{borrow::Borrow, cell::RefCell, hash::Hash, panic::Location};
mod slot;
/// Calls the provided function as a child of [`CallId::current`], using for a
/// slot the number of times the given source location has been called during
/// the current parent's scope.
///
/// This is a useful default for calls which are not expected to repeat at the
/// same callsite during the parent scope, i.e. those that will only be called
/// once per scope. It is also a useful default for calls that will occur in a
/// loop where the positional index is the primary way of identifying repeated
/// entries into the child scope.
///
/// See [`CallId`], [`root`], [`call_in_slot`], and [`nested`].
///
/// # Example
///
/// ```
/// use topo::{call, root, CallId};
///
/// let get_list_of_ids = || {
/// topo::call(|| {
/// let mut ids = vec![];
/// for i in 0..3 {
/// let current = call(CallId::current);
/// if i > 0 {
/// assert_ne!(ids[i - 1], current, "each CallId is different from the last");
/// }
/// ids.push(current);
/// }
/// ids
/// })
/// };
///
/// // without a parent call, each of these behaves as its own root
/// assert_eq!(get_list_of_ids(), get_list_of_ids());
///
/// // ...and explicitly wrapping each call in a root(...) produces the same result
/// assert_eq!(root(get_list_of_ids), root(get_list_of_ids), "explicit roots match");
///
/// // but when they're siblings under a single call, they produce distinct results
/// call(|| assert_ne!(get_list_of_ids(), get_list_of_ids(), "siblings don't match"));
/// ```
#[inline(always)]
#[track_caller]
pub fn call<F, R>(op: F) -> R
where
F: FnOnce() -> R,
{
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
struct CallCount(u32);
let callsite = Callsite::here();
let count = CallCount(callsite.current_count());
Scope::with_current(|p| p.make_child(callsite, &count)).enter(op)
}
/// Calls the provided function as a child of [`CallId::current`], using `slot`
/// as an input for the new [`CallId`].
///
/// Because this overrides [`call`]'s default slot of call count, it is
/// possible for the same [`CallId`] to be issued multiple times during a
/// single parent scope.
///
/// # Examples
///
/// ```
/// use topo::{call_in_slot, CallId};
///
/// let get_name_id = |name, value| {
/// call_in_slot(name, || {
/// println!("{}", value);
/// CallId::current()
/// })
/// };
///
/// // reusing the same slot will get the same CallId
/// let bob = get_name_id("bob", "hello");
/// let bob_again = get_name_id("bob", "hello");
/// assert_eq!(bob, bob_again);
///
/// // the same name in a nested call returns a *new* CallId
/// let bob_nested = topo::call(|| get_name_id("bob", "hello"));
/// assert_ne!(bob, bob_nested);
///
/// // different names produce different slots
/// let alice_hello = get_name_id("alice", "hello");
/// assert_ne!(bob, alice_hello);
///
/// // changing non-slot arguments doesn't affect the CallId produced
/// let alice_goodbye = get_name_id("alice", "goodbye");
/// assert_eq!(alice_hello, alice_goodbye);
/// ```
///
/// Note that while [`call`] uses `call_in_slot` internally, there is no way to
/// manually "reuse" a call count slot with this function.
///
/// ```
/// use topo::{call, call_in_slot, CallId};
///
/// let get_lists_of_ids = || {
/// topo::call(|| {
/// let (mut counted_ids, mut slotted_ids) = (vec![], vec![]);
/// for i in 0..3 {
/// // (we're cheating here because we know that call() uses a u32)
/// let slotted = call_in_slot(&(i as u32), CallId::current);
/// let counted = call(CallId::current);
///
/// if i > 0 {
/// assert_ne!(slotted_ids[i - 1], slotted);
/// assert_ne!(counted_ids[i - 1], counted);
/// }
/// slotted_ids.push(slotted);
/// counted_ids.push(counted);
/// }
///
/// // these should *not* be the same despite emulating the call count
/// assert_ne!(&counted_ids, &slotted_ids);
/// (counted_ids, slotted_ids)
/// })
/// };
///
/// assert_eq!(get_lists_of_ids(), get_lists_of_ids());
/// ```
#[track_caller]
pub fn call_in_slot<F, Q, R, S>(slot: &Q, op: F) -> R
where
F: FnOnce() -> R,
Q: Eq + Hash + ToOwned<Owned = S> + ?Sized,
S: Borrow<Q> + Eq + Hash + Send + 'static,
{
Scope::with_current(|p| p.make_child(Callsite::here(), slot)).enter(op)
}
/// Calls the provided function as the root of a new call tree, ignoring the
/// current `CallId`.
///
/// # Example
///
/// ```
/// // a call to root() here ensures the child is always treated as the same tree
/// // no matter from where the function is called
/// let independent = || topo::root(topo::CallId::current);
/// assert_eq!(topo::call(independent), topo::call(independent));
///
/// // this is a normal topo call, it returns `CallId`s based on the parent state
/// let dependent = || topo::call(topo::CallId::current);
/// assert_ne!(topo::call(dependent), topo::call(dependent));
/// ```
pub fn root<F, R>(op: F) -> R
where
F: FnOnce() -> R,
{
illicit::hide::<Scope>();
call(op)
}
/// Identifies the scope of a nested function call in a way that can be
/// deterministically reproduced across multiple executions.
///
/// The [`CallId::current`] for a function call is the combined product of:
///
/// * a callsite: the [`std::panic::Location`] where the function was called
/// * a parent: the [`CallId::current`] which was active when calling the
/// function
/// * a [slot](#slots): a value indicating the call's "index" within the parent
/// call
///
/// When a nested call returns or unwinds, it reverts [`CallId::current`] to
/// the parent `CallId`.
///
/// # Example
///
/// ```
/// use topo::{call, root, CallId};
///
/// let returns_two_ids = || {
/// let first = call(|| CallId::current());
/// let second = call(|| CallId::current());
/// assert_ne!(first, second, "these are always distinct calls");
/// (first, second)
/// };
///
/// // running the closure as a nested call(...) gives different siblings
/// assert_ne!(call(returns_two_ids), call(returns_two_ids));
///
/// // a call to root(...) gives each of these closure calls an identical parent CallId
/// assert_eq!(root(returns_two_ids), root(returns_two_ids));
/// ```
///
/// # Creation
///
/// Every `CallId` is created by calling one of:
///
/// * a function marked [`nested`]
/// * a function passed to [`call`]
/// * a function and slot passed to [`call_in_slot`]
///
/// # Slots
///
/// Slots are used to differentiate between repeated calls at the same callsite
/// and define the "index" of a child call within its parent. By default (and in
/// [`call`]) the slot is populated by the number of times the current
/// callsite has been called in this parent. Users can provide their own slot
/// with [`call_in_slot`] or using `#[topo::nested(slot = "...")]`:
///
/// See [`call_in_slot`] and [`nested`] for examples.
///
/// # Roots
///
/// The topmost parent or "root" of a callgraph can be defined in two ways:
///
/// 1. a [`call`] or [`call_in_slot`] invocation with no parent implicitly
/// creates its own root
/// 2. an explicit call to [`root`] creates a new subgraph regardless of the
/// current parent
///
/// See [`root`] for examples.
///
/// # `CallId` and multiple threads
///
/// The [`illicit`] environment used for tracking the current `CallId` is
/// thread-local, but values used to track slots are
/// interned in a global cache. This means that two different threads calling
/// an identical chain of nested functions can observe identical `CallId`s:
///
/// ```
/// # use topo::{call, root, CallId};
/// #
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// #
/// # let returns_two_ids = || {
/// # let first = call(|| CallId::current());
/// # let second = call(|| CallId::current());
/// # assert_ne!(first, second, "these are always distinct calls");
/// # (first, second)
/// # };
/// #
/// use std::{
/// sync::mpsc::{channel, Sender},
/// thread,
/// };
///
/// let (send_ids, recv_ids) = channel();
///
/// let spawn_worker = |sender: Sender<(CallId, CallId)>| {
/// thread::spawn(move || sender.send(root(returns_two_ids)).unwrap())
/// };
/// let first_thread = spawn_worker(send_ids.clone());
/// let second_thread = spawn_worker(send_ids);
///
/// first_thread.join().unwrap();
/// second_thread.join().unwrap();
///
/// // the two worker threads "did the same work"
/// assert_eq!(recv_ids.recv()?, recv_ids.recv()?);
/// #
/// # Ok(()) }
/// ```
///
/// [`nested`]: `crate::nested`
/// [`call`]: `crate::call`
/// [`call_in_slot`]: `crate::call_in_slot`
/// [`root`]: `crate::root`
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct CallId {
callsite: Callsite,
parent: Slot<CallId>,
slot: OpaqueSlot,
}
impl CallId {
/// Returns the root `CallId`.
pub(crate) fn root() -> Self {
Self {
callsite: Callsite::here(),
parent: Slot::fake(),
slot: Slot::<String>::fake().into(),
}
}
/// Returns the current `CallId`.
pub fn current() -> Self {
Scope::with_current(|current| current.id)
}
pub(crate) fn child<Q, S>(&self, callsite: Callsite, slot: &Q) -> Self
where
Q: Eq + Hash + ToOwned<Owned = S> + ?Sized,
S: Borrow<Q> + Eq + Hash + Send + 'static,
{
Self { callsite, parent: Slot::make(self), slot: Slot::make(slot).into() }
}
}
/// A value unique to the source location where it is created.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
struct Callsite {
location: usize,
}
impl Callsite {
/// Constructs a callsite whose value is unique to the source location at
/// which this is called.
#[track_caller]
pub fn here() -> Self {
Location::caller().into()
}
/// Returns the number of times this callsite has been seen in the current
/// call.
pub fn current_count(self) -> u32 {
Scope::with_current(|current| {
if let Some(c) = current.callsite_counts.borrow().iter().find(|(site, _)| site == &self)
{
c.1
} else {
0
}
})
}
}
impl From<&'static Location<'static>> for Callsite {
fn from(location: &'static Location<'static>) -> Self {
Self {
// the pointer value for a given location is enough to differentiate it from all others
location: location as *const _ as usize,
}
}
}
/// The root of a sub-graph within the overall topology.
///
/// The current `Scope` contains the local [`CallId`] and a count of how often
/// each of its children has been called.
#[derive(Debug)]
struct Scope {
/// current id
id: CallId,
/// # times each callsite's type has been observed during this scope.
callsite_counts: RefCell<Vec<(Callsite, u32)>>,
}
impl Scope {
/// Mark a child Point in the topology, returning an illicit layer which will reference the new
/// point when entered.
#[inline(never)] // this is only called by functions with more generic args than this one
fn make_child<Q, S>(&self, callsite: Callsite, slot: &Q) -> illicit::Layer
where
Q: Eq + Hash + ToOwned<Owned = S> + ?Sized,
S: Borrow<Q> + Eq + Hash + Send + 'static,
{
self.increment_count(callsite);
let child_point = Self {
callsite_counts: RefCell::new(Default::default()),
id: self.id.child(callsite, slot),
};
illicit::Layer::new().offer(child_point)
}
/// Runs the provided closure with access to the current [`Point`].
fn with_current<F, Out>(op: F) -> Out
where
F: FnOnce(&Scope) -> Out,
{
if let Ok(current) = illicit::get::<Scope>() {
op(&*current)
} else {
op(&Scope::default())
}
}
fn increment_count(&self, callsite: Callsite) {
let mut counts = self.callsite_counts.borrow_mut();
if let Some((_, count)) = counts.iter_mut().find(|(site, _)| site == &callsite) {
*count += 1;
} else {
counts.push((callsite, 1));
}
}
}
impl Default for Scope {
fn default() -> Self {
Self { id: CallId::root(), callsite_counts: Default::default() }
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{call, root};
use std::{collections::HashSet, sync::mpsc::channel, thread};
#[test]
fn alternating_in_a_loop() {
call(|| {
let mut ids = HashSet::new();
for i in 0..4 {
if i % 2 == 0 {
call(|| ids.insert(CallId::current()));
} else {
call(|| ids.insert(CallId::current()));
}
}
assert_eq!(ids.len(), 4, "each callsite must produce multiple IDs");
});
}
#[test]
fn one_child_in_a_loop() {
call(|| {
let root = CallId::current();
assert_eq!(
root,
CallId::current(),
"CallId must be stable across calls within the same scope"
);
let mut prev = root;
for _ in 0..100 {
let mut called = false;
call(|| {
let current = CallId::current();
assert_ne!(prev, current, "each CallId in this loop must be unique");
prev = current;
called = true;
});
assert_eq!(
root,
CallId::current(),
"CallId must be stable across calls within the same scope"
);
let mut prev = root;
for _ in 0..100 {
let mut called = false;
call(|| {
let current = CallId::current();
assert_ne!(prev, current, "each CallId in this loop must be unique");
prev = current;
called = true;
});
assert_eq!(
root,
CallId::current(),
"outside the call must have the same CallId as root"
);
assert!(called, "the call must be made on each loop iteration");
}
}
});
}
#[test]
fn reuse_same_root_two_places() {
let dependent = || call(CallId::current);
let independent = || root(CallId::current);
assert_ne!(call(dependent), call(dependent));
assert_eq!(call(independent), call(independent));
}
#[test]
fn loop_over_map_with_keys_in_slots() {
let slots = vec!["first", "second", "third", "fourth", "fifth"];
let to_call = || {
call(|| {
let mut unique_ids = HashSet::new();
for s in &slots {
call_in_slot(s, || {
let current = CallId::current();
unique_ids.insert(current);
});
}
assert_eq!(slots.len(), unique_ids.len(), "must be one CallId per slot");
unique_ids
})
};
let first = to_call();
let second = to_call();
assert_eq!(first, second, "same Ids must be produced for each slot each time");
}
#[test]
fn threads_and_ids() {
let returns_two_ids = || {
let first = call(|| CallId::current());
let second = call(|| CallId::current());
assert_ne!(first, second, "these are always distinct calls");
(first, second)
};
let (send_ids, recv_ids) = channel();
let send_ids2 = send_ids.clone();
let first_thread = thread::spawn(move || send_ids2.send(root(returns_two_ids)).unwrap());
let second_thread = thread::spawn(move || send_ids.send(root(returns_two_ids)).unwrap());
first_thread.join().unwrap();
second_thread.join().unwrap();
let (first, second) = (recv_ids.recv().unwrap(), recv_ids.recv().unwrap());
assert_eq!(first, second);
}
}