1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#![forbid(unsafe_code)]
#![deny(clippy::all, missing_docs)]

//! Caches for storing the results of repeated function calls. The caches
//! use minimal dynamic dispatch to store arbitrarily many
//! types of query results in a single store.
//!
//! Cache storage is indexed by dynamic [scopes](#scopes):
//!
//! ```
//! let storage = dyn_cache::local::SharedLocalCache::default();
//!
//! // scopes can be identified by ~anything Eq + Hash
//! let a_scope = 'a';
//! let b_scope = 'b';
//!
//! // we use interior mutability here to demonstrate query side effects
//! let count = std::cell::Cell::new(0);
//! let increment = |&to_add: &i32| -> i32 {
//!     // let's pretend that there's some other interesting work happening here...
//!     let new = count.get() + to_add;
//!     count.set(new);
//!     new
//! };
//!
//! // now we'll define some "queries" to the cache
//! let a_inc = |n| storage.cache(&a_scope, &n, &increment);
//! let b_inc = |n| storage.cache(&b_scope, &n, &increment);
//!
//! assert_eq!(count.get(), 0, "haven't called any queries");
//!
//! assert_eq!(a_inc(1), 1);
//! assert_eq!(count.get(), 1, "called 'a'(1) once");
//!
//! assert_eq!(a_inc(1), 1);
//! assert_eq!(count.get(), 1, "called 'a'(1) twice, only ran once");
//!
//! assert_eq!(b_inc(2), 3);
//! assert_eq!(count.get(), 3, "called 'a'(1) and 'b'(2)");
//!
//! assert_eq!(a_inc(1), 1, "retains cached value");
//! assert_eq!(count.get(), 3, "queries only affect their own scope");
//!
//! assert_eq!(a_inc(2), 5);
//! assert_eq!(count.get(), 5, "called 'a'(1), 'a'(2), 'b'(2)");
//!
//! assert_eq!(a_inc(1), 6, "only the most recent revision is cached");
//! assert_eq!(count.get(), 6);
//! ```
//!
//! A single cache instance can hold multiple types of [scope](#scopes):
//!
//! ```
//! let storage = dyn_cache::local::SharedLocalCache::default();
//! let count = std::cell::Cell::new(0);
//! let increment = |&to_add: &i32| -> i32 {
//!     // let's pretend that there's some other interesting work happening here...
//!     let new = count.get() + to_add;
//!     count.set(new);
//!     new
//! };
//!
//! let one_scope = 1u8;
//! let two_scope = 2i32;
//! let red_scope = b"red";
//! let blue_scope = "blue";
//!
//! // each of these queries has a different type of scope
//! // and while the inputs/outputs are the same they could also
//! // vary without interfering with each other
//! let one_inc = |n| storage.cache(&one_scope, &n, increment);
//! let two_inc = |n| storage.cache(&two_scope, &n, increment);
//! let red_inc = |n| storage.cache(&red_scope, &n, increment);
//! let blue_inc = |n| storage.cache(&blue_scope, &n, increment);
//!
//! assert_eq!(one_inc(1), 1);
//! assert_eq!(count.get(), 1);
//!
//! assert_eq!(two_inc(1), 2);
//! assert_eq!(one_inc(1), 1, "still cached");
//! assert_eq!(count.get(), 2, "only one of the queries ran");
//!
//! assert_eq!(red_inc(2), 4);
//! assert_eq!(two_inc(1), 2, "still cached");
//! assert_eq!(one_inc(1), 1, "still cached");
//! assert_eq!(count.get(), 4, "only one of the queries ran");
//!
//! assert_eq!(blue_inc(3), 7);
//! assert_eq!(red_inc(2), 4, "still cached");
//! assert_eq!(two_inc(1), 2, "still cached");
//! assert_eq!(one_inc(1), 1, "still cached");
//! assert_eq!(count.get(), 7, "only one of the queries ran");
//!
//! // invalidation still happens once per scope (type)
//! assert_eq!(blue_inc(5), 12, "blue has a different input");
//! assert_eq!(red_inc(2), 4, "still cached");
//! assert_eq!(two_inc(1), 2, "still cached");
//! assert_eq!(one_inc(1), 1, "still cached");
//! assert_eq!(count.get(), 12, "only one of the queries ran");
//! ```
//!
//! # Cache types
//!
//! There are two main flavors of cache available for use in this crate:
//!
//! | Shared type                 | Synchronized? |
//! |-----------------------------|---------------|
//! | [`sync::SharedSendCache`]   | Mutex         |
//! | [`local::SharedLocalCache`] | RefCell       |
//!
//! These variants are used by calling [`sync::SharedSendCache::cache_with`] or
//! [`local::SharedLocalCache::cache`].
//!
//! The shared cache types above are implemented by wrapping these "inner"
//! types:
//!
//! | Mutable type          | Requires `Send`? |
//! |-----------------------|------------------|
//! | [`sync::SendCache`]   | yes              |
//! | [`local::LocalCache`] | no               |
//!
//! These "inner" caches require mutable access to call their functions like
//! [`local::LocalCache::get`] which returns either a reference or a
//! [`CacheMiss`] that can be passed back to the cache in
//! [`local::LocalCache::store`] to initialize a value in the cache:
//!
//! ```
//! let mut cache = dyn_cache::local::LocalCache::default();
//! let scope = &'a';
//! let arg = &1;
//!
//! let miss = cache.get(scope, arg).expect_err("first access will always be a miss");
//! let (entry, result): (_, Vec<usize>) = miss.init(|&n| {
//!     let v: Vec<usize> = vec![n; n];
//!     (v.clone(), v)
//! });
//! cache.store(entry);
//! assert_eq!(result, vec![1usize]);
//!
//! let result: &Vec<usize> = cache.get(scope, arg).unwrap();
//! assert_eq!(result, &vec![1]);
//! ```
//!
//! See [`sync::SendCache::get`] and [`sync::SendCache::store`] for the
//! thread-safe equivalents.
//!
//! The shared variants are defined by wrapping these inner cache types in
//! reference counting and synchronized mutability.
//!
//! # Query types
//!
//! Each query type maps to a typed "namespace" within the unityped cache
//! storage, each query having a distinct type each for its scope, input, and
//! output.
//!
//! ## Scopes
//!
//! The scope of a query is its identifier within cache storage for the given
//! input & output types. Scopes must implement `Eq` and `Hash` so that results
//! can be efficiently and uniquely indexed.
//!
//! Each scope identifies 0-1 `(Input, Output)` pairs in each namespace. The
//! same type of scope can be used in multiple queries without collision if
//! the types of inputs, outputs, or both differ.
//!
//! ## Inputs
//!
//! The input to a query determines when it is re-run. If a given query is
//! present in the cache then the previous input is compared to the new input.
//! If the input hasn't changed, the query can be skipped and its
//! previously-stored output is returned.
//!
//! ## Outputs
//!
//! The only constraint on query outputs is that they are owned (`Output:
//! 'static`). This imposes the inconvenient requirement that all access to
//! stored values occurs during the scope of a closure (similar to thread-locals
//! in the standard library).
//!
//! The most common way to work around this requirement is to choose output
//! types that cheaply implement [`std::clone::Clone`].
//!
//! # Allocations
//!
//! In order to store distinct query results in the same container, allocations
//! and indirection are required.
//!
//! ## Borrowed query parameters
//!
//! All of the cache functions accept a reference to a type `Key:
//! ToOwned<Owned=Scope>` so that the scope is only cloned on the first
//! insertion to its storage and all subsequent lookups can be with a borrowed
//! type.
//!
//! Like the query scope, functions to get cache values accept a borrowed
//! version of the input and only clone it when the input has changed.
//!
//! ## Causes
//!
//! There are three situations where these caches allocate:
//!
//! 1. caching new types which haven't been seen by that cache instance yet
//! 2. storing the results of a new query
//! 3. updating the results of a stored query
//!
//! There are several types of allocations performed by the caches in this
//! crate:
//!
//! | Allocation                         | Causes        |
//! |------------------------------------|---------------|
//! | box a new, empty namespace         | (1)           |
//! | resize a cache's map of namespaces | (1)           |
//! | call `.to_owned()` on a scope/key  | (2)           |
//! | resize a namespace's storage       | (2)           |
//! | call `.to_owned()` on an input/arg | (2), (3)      |
//! | update an output's dependents      | (1), (2), (3) |
//!
//! Outside of these, only user-defined functions should perform any allocation.
//!
//! # Garbage Collection
//!
//! All of the caches have a `gc()` method which retains only used values. A
//! value is used if it or a value which depends on it has been used/rooted
//! since the last call to `gc()`.
//!
//! ```
//! let storage = dyn_cache::local::SharedLocalCache::default();
//! let a_scope = 'a';
//! let b_scope = 'b';
//!
//! // we use interior mutability here to demonstrate query side effects
//! let count = std::cell::Cell::new(0);
//! let increment = |&to_add: &i32| -> i32 {
//!     // let's pretend that there's some other interesting work happening here...
//!     let new = count.get() + to_add;
//!     count.set(new);
//!     new
//! };
//!
//! // we'll define the same "queries" to the cache as in the previous example
//! let a_inc = |n| storage.cache(&a_scope, &n, &increment);
//! let b_inc = |n| storage.cache(&b_scope, &n, &increment);
//!
//! assert_eq!(a_inc(1), 1);
//! assert_eq!(count.get(), 1, "called 'a'(1) once");
//!
//! assert_eq!(b_inc(2), 3);
//! assert_eq!(count.get(), 3, "called 'a'(1) and 'b'(2)");
//!
//! // mark the end of this "revision" in the cache
//! // this won't drop anything yet, just marks all cached values as unused
//! storage.gc();
//!
//! // run only one of the queries to mark it live
//! assert_eq!(a_inc(1), 1, "value is still cached");
//! assert_eq!(count.get(), 3, "nothing has touched our side effect tracker");
//!
//! storage.gc(); // drops b_inc from storage
//!
//! assert_eq!(b_inc(2), 5, "b_inc was dropped from the cache, ran again");
//! assert_eq!(count.get(), 5);
//!
//! assert_eq!(a_inc(1), 1, "value is still cached");
//! assert_eq!(count.get(), 5);
//! ```
//!
//! ## Nesting
//!
//! When a cache read *fails*, we expect that the value will be populated
//! immediately after and a new node in the dependency graph is created. The new
//! dependency node is marked as an incoming dependent on any cache values which
//! are accessed during the initialization of the new value. The new node is
//! then marked as a "root" for the garbage collector once it has
//! been initialized and the cache populated. If in subsequent revisions the
//! rooted value is accessed again it will be re-rooted and its dependents will
//! be marked as live even if they were not directly accessed in that revision.
//!
//! When a cache read *succeeds*, its dependency node is marked as being
//! depended upon by the node (if any) which was being initialized during the
//! read, linking the two dependencies together.
//!
//! ```
//! let storage = dyn_cache::local::SharedLocalCache::default();
//! let a_scope = 'a';
//! let b_scope = 'b';
//!
//! let count = std::cell::Cell::new(0);
//! let increment = |&to_add: &i32| -> i32 {
//!     // let's pretend that there's some other interesting work happening here...
//!     let new = count.get() + to_add;
//!     count.set(new);
//!     new
//! };
//!
//! let a_inc = |n| storage.cache(&a_scope, &n, &increment);
//!
//! // this new query "depends on" a_inc by calling it in its own init closure
//! let b_inc = |n| storage.cache(&b_scope, &n, |&n| a_inc(n));
//!
//! assert_eq!(b_inc(2), 2);
//! assert_eq!(count.get(), 2);
//!
//! // until now, we haven't called a_inc directly
//! assert_eq!(a_inc(2), 2, "a_inc is indeed cached as a dep of b_inc");
//! assert_eq!(count.get(), 2);
//!
//! storage.gc(); // mark both queries dead
//!
//! // in this revision we'll only call b_inc directly
//! assert_eq!(b_inc(3), 5);
//! assert_eq!(count.get(), 5);
//!
//! storage.gc(); // doesn't actually drop anything
//!
//! // both queries should still have their outputs for input=3 cached
//! assert_eq!(b_inc(3), 5);
//! assert_eq!(a_inc(3), 5);
//! assert_eq!(count.get(), 5);
//!
//! // we can also check to make sure that neither query is touching the cell
//! count.set(0);
//! assert_eq!(b_inc(3), 5);
//! assert_eq!(a_inc(3), 5);
//! assert_eq!(count.get(), 0);
//! ```

use downcast_rs::{impl_downcast, Downcast};
use hash_hasher::HashBuildHasher;
use hashbrown::hash_map::DefaultHashBuilder;
use std::{
    any::TypeId,
    fmt::{Debug, Formatter, Result as FmtResult},
    hash::{BuildHasher, Hash, Hasher},
    marker::PhantomData,
};

#[macro_use]
mod definition;

mod cache_cell;
mod dep_node;
mod namespace;

use namespace::{KeyMiss, Namespace};

/// The result of a failed attempt to retrieve a value from the cache.
/// Initialize a full [`CacheEntry`] for storage with [`CacheMiss::init`].
///
/// ```
/// use dyn_cache::local::LocalCache;
/// let mut cache = LocalCache::default();
/// let (scope, arg) = (&'a', &1);
///
/// let miss = cache.get(scope, arg).expect_err("first access will always be a miss");
/// # let (entry, result): (_, Vec<usize>) = miss.init(|&n| {
/// #     let v: Vec<usize> = vec![n; n];
/// #     (v.clone(), v)
/// # });
/// # cache.store(entry);
/// # assert_eq!(result, vec![1usize]);
/// ```
#[derive(Clone, Eq, PartialEq)]
pub struct CacheMiss<'k, Key: ?Sized, Scope, Input, Output, H = DefaultHashBuilder> {
    query: Query<Scope, Input, Output>,
    key_miss: KeyMiss<'k, Key, Input, H>,
}

impl<'k, Key: ?Sized, Scope, Input, Output, H> CacheMiss<'k, Key, Scope, Input, Output, H> {
    /// Prepare the cache miss to be populated by running `query(arg)`,
    /// returning a separate value. The value returned (`R`) is typically
    /// derived in some way from the stored `Output`.
    ///
    /// ```
    /// # use dyn_cache::local::LocalCache;
    /// # let mut cache = LocalCache::default();
    /// # let (scope, arg) = (&'a', &1);
    /// # let miss = cache.get(scope, arg).expect_err("first access will always be a miss");
    /// let (entry, result): (_, Vec<usize>) = miss.init(|&n| {
    ///     let v: Vec<usize> = vec![n; n];
    ///     (v.clone(), v)
    /// });
    /// cache.store(entry);
    /// assert_eq!(result, vec![1usize]);
    /// ```
    pub fn init<R>(
        self,
        query: impl FnOnce(&Input) -> (Output, R),
    ) -> (CacheEntry<'k, Key, Scope, Input, Output, H>, R) {
        let (output, to_return) = self.key_miss.init(query);
        (CacheEntry { output, miss: self }, to_return)
    }
}

impl<'k, Key, Scope, Input, Output, H> Debug for CacheMiss<'k, Key, Scope, Input, Output, H>
where
    Key: Debug + ?Sized,
    Scope: Debug,
    Input: Debug,
{
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        f.debug_struct("CacheMiss")
            .field("query", &self.query)
            .field("key_miss", &self.key_miss)
            .finish()
    }
}

/// A fully-initialized input/output entry, ready to be written to the cache.
/// Obtained from [`CacheMiss::init`] and passed to [`local::LocalCache::store`]
/// or [`sync::SendCache::store`].
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct CacheEntry<'k, Key: ?Sized, Scope, Input, Output, H = DefaultHashBuilder> {
    miss: CacheMiss<'k, Key, Scope, Input, Output, H>,
    output: Output,
}

/// A cache for types which are not thread-safe (`?Send`).
pub mod local {
    use std::{cell::RefCell, rc::Rc};

    define_cache!(local, LocalCache, Rc, RefCell::borrow_mut);
}

/// A thread-safe cache which requires stored types implement `Send`.
pub mod sync {
    use parking_lot::Mutex;
    use std::sync::Arc;

    define_cache!(sync, SendCache: Send, Arc, Mutex::lock);
}

/// A type which can contain values of varying liveness.
trait Storage: Downcast + Debug {
    /// Traverse stored values, identifying roots.
    fn mark(&mut self, revision: u64);

    /// Remove dead entries.
    fn sweep(&mut self);
}

impl_downcast!(Storage);

/// Describes the outcome of garbage collection for a cached value.
#[derive(Clone, Copy, Debug, PartialEq)]
enum Liveness {
    /// The value is still live.
    Live,
    /// The value should be dropped.
    Dead,
}

/// The type of a dynamic cache query, used to shard storage in a fashion
/// similar to `anymap` or `typemap`.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
struct Query<Scope, Input, Output, H = HashBuildHasher> {
    ty: PhantomData<(Scope, Input, Output)>,
    hasher: PhantomData<H>,
    hash: u64,
}

impl<Scope, Input, Output, H> Query<Scope, Input, Output, H>
where
    Scope: 'static,
    Input: 'static,
    Output: 'static,
    H: BuildHasher,
{
    fn new(build: &H) -> Self {
        // this is a bit unrustic but it lets us keep the typeid defined once
        let mut new = Query { ty: PhantomData, hasher: PhantomData, hash: 0 };
        let mut hasher = build.build_hasher();
        new.ty().hash(&mut hasher);
        new.hash = hasher.finish();
        new
    }

    fn make_namespace(&self) -> Box<Namespace<Scope, Input, Output>> {
        Box::new(Namespace::default())
    }

    fn hash(&self) -> u64 {
        self.hash
    }

    fn ty(&self) -> TypeId {
        TypeId::of::<(Scope, Input, Output)>()
    }
}

impl<Scope, Input, Output, H> Debug for Query<Scope, Input, Output, H> {
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        f.debug_struct("Query")
            .field("ty", &std::any::type_name::<(Scope, Input, Output)>())
            .field("hasher", &std::any::type_name::<H>())
            .field("hash", &self.hash)
            .finish()
    }
}